Computational Study of Site-dependent Activity of Carbon Dioxide Reduction Reaction on Silver Nanostructures

Yu Wang Sorensen Group Meeting Literature 1/22/2021

Computational Chemistry: The Big Picture

- Computational chemistry is about the use of computer modelling and simulation, including ab initio methods and semi-empirical methods to study the structures and properties of molecules and materials.
- In early 1970s, ab initio programs, such as Gaussian, began to be used.
- The Nobel Prize in Chemistry 1998 was divided equally between Walter Kohn and John A. Pople.

CO2RR: Introduction

- Carbon dioxide (CO₂) reduction reaction (CO2RR) is significant for energy conversion as well as environment protection.
- Carbon dioxide can be reduced on a metal surface using electrochemical approach in a controllable and clean fashion.
- However, no transition metal surface can catalyze carbon dioxide to fuels both efficiently and selectively.
- The aim was to understand the higher catalytic activity of twin boundary edge for CO2RR mechanistically.

Twin Boundary Edge (TBE)

- A special case of grain boundary with a large angle
- No atomic misfit
- Crystals on either side of the plane are the mirror image of each other

Reaction Model

$$CO_2 + * \rightarrow CO_2*$$
 (* = adsorption site)

(Equation 1)

$$CO_2^* + H^+ + e^- \rightarrow COOH^*$$

(Equation 2)

$$COOH^* + H^+ + e^- \rightarrow CO^* + H_2O$$

(Equation 3)

$$CO* \rightarrow CO + *$$

(Equation 4)

Computational Details

- Total energy of the silver adsorption system was calculated.
- First-principles calculations based on density functional theory as implemented in the Vienna Ab initio Simulation Package (VASP).

Computational Details

- Slab model is used for nanostructure surfaces.
- Other than compared to the terrace surface on nano cubes, TBE is also compared to the side terrace surfaces.

Results: COOH* Intermediate

Results: COOH* Intermediate

Results: CO* Intermediate

Hu et al., Chem, 6, 11, 2020, 3007–3021

Results: CO* Intermediate

Results: TBE vs. (100) Surface

Hu et al., Chem, 6, 11, 2020, 3007–3021

Discussion and Conclusion

- Generation of COOH* intermediate is the rate-limiting step.
- Twin-boundary edge has much higher catalytic activity of CO2RR compared to the {100} surface atoms.
- The catalytic activity of TBE atoms was more than two orders higher than that of the {100} surfaces atoms, experimentally.
- The deviation of experimental and theoretical rate ratio might be the geometric roundness of TBEs of nanowires in experiment.