Career of Paul Frøyen: Wittig Reaction

selected paper: 1960s to 1990s

Sorensen Group Meeting Ximing Li March 9, 2018

A Summary

■ Academic Career

1966 University of Bergen, Norway

1976 University of Oslo, Norway

1991

Agricultural University of Norway, Norway (Now: Norwegian University of Life Sciences)

■ Papers published: ~90

■ Research focus:

Alkaline Hydrolysis Kinetics '66-'67

'68-'74 Ylide/Aza Ylide Reaction & Kinetics (Ylide with Aldehyde & Isocyanate)

Acyclic Oxyarsoranes Chemistry & Staudinger Reaction '74-

Prof. Paul Ragnar Frøyen

Study of the Applicability of the Wittig Reaction in Synthesis of Allenes

■ Acta Chem. Scand. 22 (1968) No. 7

Year	Reaction		Product	Condition required
1949, Wittig & Haag	Ph ₃ P=C(CH ₃) ₂	+ Ph ₂ C=C=O	$Ph_2C=C=C(CH_3)_2$	150°C in vacuo
1922, Luscher	Ph ₃ P=CPh ₂	+ Ph ₂ C=C=O	Ph ₂ C=C=CPh ₂	140°C
1967, Birum & Matthews	Ph ₃ P=C=C(CF ₃) ₂	+ Ph ₂ C=C=O	$Ph_2C=C=C=C(CF_3)_2$	r.t.
1961, Wadsworth & Emmons	(EtO) ₂ POCHCO ₂ Et	+ Ph ₂ C=C=O	Ph ₂ C=C=CHCO ₂ Et	r.t.

$$+ Ph_{3}P - C = R \\
Ph_{3}P$$

The stability of the betaines increases from **A** to **C** because:

- 1) The charge on oxygen can be successively reduced through conjugation, making oxygen less nucleophilic and phosphorus less electrophilic;
- 2) The betaine **A** has two sp³-hybridized carbon atoms, the betaine **B** has one sp³- and one sp²- hybridized carbon atom, and betaine **C** has two sp²-hybridized carbon atoms in the 4-membered ring intermediate. The net result is a success increase of the P-C-C and C-C-O angles, making the closure of the f4-membered ring corresponding difficult.

Study of Reactions between Phenyl Isocyanate and Phosphine Oxides, respectively Phosphine Imines

■ Acta Chem. Scand. 23 (1969) No. 8

1962, Monagle:

¹⁾ Step I is r.d.s. (from Activation energy numbers)

²⁾ The activation energy of the phosphine imine-phenyl isocyanate reaction is **independent** of the substituents linked to phosphous. This is in remarkable contrast to the phosphine oxide-phenyl isocyanate reaction where the actication energy is found to **depend** strongly on the substituents. — **Why?**

Study of Reactions between Phenyl Isocyanate and Phosphine Oxides, respectively Phosphine Imines

■ Acta Chem. Scand. 23 (1969) No. 8

A modification of reaction scheme:

$$P=0$$

$$O=C=NPh$$

Since oxygen is a harder Nucleophile than nitrogen, oxygen is also the most reactive atom towards the hard phosphorus center in tetravalent phosphorus compounds. It allows therefore that,

- 1) In step I, the rate of decomposition of the intermediate a1 back to reactants should be much faster than the rate of the formation of the pentacovalent intermediate b1.
- 2) In step II, the betaine intermediate **a2** is more easily transformed to the pentacovalent intermediate **b2** than back to the reactants.

Synthesis and Reactions of Arsine Imines

■ Acta Chem. Scand. 23 (1969) No. 9

Arsine imines are generated as intermediates in the reaction between arsine oxides and phenyl isocyanate leading to diphenyl carbodiimide:

Evidence: (?)

Ph₃As=O
$$O=C=NCOPh$$

$$O=C=NCOPh$$
Ph₃As=N-C-Ph

The delocalization of electronic density between nitrogen, arsenic, and oxygen, lowers the nucleophilicity of nitrogen and correspondingly reduces its reactivity towards the carbonyl carbon the isocyanate.

Synthesis of Some Arsine Imine Derivatives

■ Acta Chem. Scand. 25 (1971) No. 3

Synthesis of Some Arsine Imine Derivatives

■ Acta Chem. Scand. 25 (1971) No. 3

EWG

N-sulfinyl amides:

$$R-N=S=O + Ph_3As=O \longrightarrow Ph_3As=O \xrightarrow{-SO_2} Ph_3As=N-R$$
 fast

 $R = PhCO-, (EtO)_2P(O)-, p-Me-C_6H_4SO_2-, PhSO_2-, MeSO_2-$

N-sulfinylaniline:

$$N = C = O$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As = N - R$$

$$+ Ph_3As = O \longrightarrow Ph_3As =$$

Kinetic Studies (of Wittig Reaction)

■ 3 papers: Acta Chem. Scand. 25 (1971) No. 7: of rxn between stabilized arsonium ylides and p-Nitrobenzaldehyde 26 (1972) No. 5: of rxn between phosphine N-phenylimines and p-Nitrobenzaldehyde 26 (1972) No. 6: of rxn between fluorenylidene phosphoranes and p-Nitrobenzaldehyde

- stabilized arsonium ylides

 ⊕ ⊖
- **R**₃P—NPh phosphine N-phenylimines

- Interest: Intermediacy of betaine in these reactions
- Kinetic: Generally, k(benzeze) > k(DMSO) > k(DMF); k(MeOH) > k(benzene).
- Not consistent with: formation of a betaine as TS.

 Consistent with: A synchronized reaction mechanism
- Other evidences:
 Large negative entropy; Very low activation energy;
 Catalysis by hydrogen bonding solvents
- This is also observed in our optimization

More Interesting Reactions: AsPh₃

■ Acta Chem. Scand. 25 (1971) No. 7

$$Ph_3As=NPh + ArNO \rightarrow Ph_3As=O + PhN=NAr$$

■ Phosphorus, Sulfur, and Silicon, 1993, Vol. 81

OHC — CHO + R-N=C=O
$$\xrightarrow{Ph_3As=O}$$
 RN=C — C=NF

R O + R-N=C=O $\xrightarrow{Ph_3As=O}$ R N-R

O + R-N=C=O $\xrightarrow{Ph_3As=O}$ R-N-R

O + R-N=C=O $\xrightarrow{Ph_3As=O}$ R-N-R

O + R-N=C=O $\xrightarrow{Ph_3As=O}$ R-N-R

More Interesting Reactions: AsPh₃

■ Phosphorus, Sulfur, and Silicon, 1993, Vol. 81

$$Ph-N=C=N-Ph$$

$$Ph_3As=NR + Ph-N=C=S \longrightarrow Ph_3As=S + R-N=C=N-R$$

$$Ph-N=C=N-R$$

Even more Interesting Reactions: PPh₃

one-pot transformations: Phosphorus, Sulfur, and Silicon, 1994, Vol. 91: Carboxylic Acid Esters (I)
Phosphorus, Sulfur, and Silicon, 1996, Vol. 116: Alkyl lodides (II)
Phosphorus, Sulfur, and Silicon, 1995, Vol. 102: Acyl Bromides (V)
Phosphorus, Sulfur, and Silicon, 1994, Vol. 89: Acyl Azides (VIII)
Syn. Comm, 1995, 25(7), (1995): Amides (IX)

■
$$Ph_3P$$
: $X - N$

Pentane/DCM
 $-30^{\circ}C$
 Ph_3PX

Pentane/DCM
 $-30^{\circ}C$
 Ph_3PX

Pentane/DCM
 $-30^{\circ}C$
 Ph_3PX

Ph₃P-O
 $-N$

Ph

Even more Interesting Reactions: PPh₃

■ heterocycles formation: Phosphorus, Sulfur, and Silicon, 1991, Vol. 57: 1,3,4-Oxadiazoles (IV)

Phosphorus, Sulfur, and Silicon, 1991, Vol. 60: 2-Amino-1,3-Oxazoles (VII)

Phosphorus, Sulfur, and Silicon, 1991, Vol. 63: Pyrazines (X)

$$\begin{array}{c} R_{2} \\ N_{3} \\ N_{3} \\ N_{4} \\ N_{5} \\ N_{7} \\$$

What can we learn?

■ Currently

■ Unique reacticity of As over P